طراحی فضای داخلی فروشگاه‌ها بر اساس شبیه‌‌سازی الگوی حرکتی افراد

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مدیریت بازرگانی، دانشکده اقتصاد، مدیریت و علوم اداری، دانشگاه سمنان، سمنان، ایران

2 استاد گروه مدیریت بازرگانی، دانشکده اقتصاد، مدیریت و علوم اداری، دانشگاه سمنان، سمنان، ایران

3 دانشیار گروه مدیریت بازرگانی، دانشکده اقتصاد، مدیریت و علوم اداری، دانشگاه سمنان، سمنان، ایران

4 استادیار گروه عمران، واحد شاهرود، دانشگاه آزاد اسلامی، شاهرود، ایران

10.29252/bar.2021.13669.3445

چکیده

هدف پژوهش طراحی فضای داخلی فروشگاه‌‌ها براساس شبیه‌‌سازی الگوی حرکتی افراد است. جامعه آماری پژوهش شامل مشتریان فروشگاه هایپرمارکت ققنوس در شهر سمنان است. داده‌‌ها از طریق فیلم‌‌های دوربین مدار بسته فروشگاه گردآوری و برای طراحی فضای داخلی چندین گام طی شد. در گام اول با استفاده از تکنیک طرح همدلی، رفتار مشتریان درون فروشگاه آنالیز شد. در گام دوم با استفاده از نرم‌‌افزار طراحی اتوکد فضای فروشگاه با چیدمان‌‌های قالب استاندارد و با استفاده از روش گروه کانونی، چیدمانی بر اساس نظرات مشتریان طراحی شد. در گام سوم با استفاده از روش شبیه‌‌سازی فضای فروشگاه با چیدمان‌‌های مختلف طراحی و الگوی حرکتی افراد در آن شبیه‌‌سازی شد و در گام آخر با استفاده از روش رگرسیون خطی، تعداد اقلام خریداری شده برای هر سناریوی تعریف شده، پیش‌‌بینی و با هم مقایسه شدند. نتایج تحلیل رگرسیون نشان داد که مسافت طی شده، سرعت حرکت، زمان خرید و نوع رفتار مشتریان عوامل موثر بر پیش‌‌بینی تعداد اقلام خریداری شده، هستند و نتایج مقایسه سناریوهای طرح‌‌بندی فروشگاه نشان داد که بعد از چیدمان با مسیر اجباری، چیدمان طراحی شده با مشارکت مشتریان، بیشترین تغییرات را در افزایش زمان خرید (12%)، مسافت طی شده (22%) و تعداد اقلام خریداری شده (18%) دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Designing Interior Stores’ Space Based on Simulating Individuals’ Movement Patterns

نویسندگان [English]

  • Mehri Shahriari 1
  • Davood Feiz 2
  • Azim Zarei 3
  • Ehsan Kashi 4
1 Ph.D. Candidate in Business Administration (Marketing Management), Semnan University, Semnan, Iran
2 Professor in Business Management, Semnan University, Semnan, Iran
3 Associate Professor in Business Administration, Semnan University, Semnan, Iran
4 Assistant Professor, Department of civil engineering, Shahrood Branch, Islamic Azad University, Shahrood, Iran
چکیده [English]

The main purpose of this study is to designing interior stores’ space based on simulating individuals’ movement patterns. On this basis, it is exploratory in terms of objective and applied in terms of results. The statistical population of the study included customers of Ghoghnoos hypermarket in Semnan and data collected using CCTV films of a hypermarket. Several steps were taken to design the interior. In the first step, the in-store customer behavior was analyzed using empathic design techniques. In the second step, using AutoCAD design software, the store space was designed with standard template layouts and, using the focus group approach, a layout based on customer feedback was designed. In the third step, using the simulation method, different store layouts were designed and the people's movement pattern was simulated and Finally, using linear regression, the number of sales items for each scenario was defined, predicted and compared. The results of linear regression analysis showed that distance traveled, speed of movement, shopping time and type of customer behavior are factors influencing basket size forecasting. The results of comparing different store layout scenarios showed that after forced-path layout, layout designed with customer involvement, had the highest percentage of changes in increasing purchase time (12%), distance traveled (22%) and basket size (18%).

کلیدواژه‌ها [English]

  • Designing the Stores’ Space
  • Interior Stores’ Space
  • Simulating Movement Patterns
  • Semnan
Akram, U., Hui, P., Khan, M. K., Hashim, M. & Rasheed, S. (2016). Impact of store atmosphere on impulse buying behavior: moderating effect of demographic variable. International Journal of u-and e- service, Science and Technology, 9 (7), 43-60.
Anic, I. D. Radas, S. & Lim, L. K. S. (2010). Relative effects of store traffic and customer traffic flow on shopper spending. The International Review of Retail, Distribution and Consumer Research, 20 (2), 237-250.
Bloomberg. (2018). What Drew Amazon and Alibaba to Bricks-and-Mortar: Q&A. Bloomberg QuickTake. Retrieved from https://www.bloomberg.com/news/articles/2018-01-30/what-drewamazon-and alibaba-to-brick-and-mortar-quicktake-q-a
Bohari, Z. A., Bachok, S. & Osman, M. M. (2016). Simulating the pedestrian movement in the public transport infrastructure. Social and Behavioral Science, 222, 791-799.
Custers, P. J. M. (2008). The effects of retail lighting on atmosphere perception. Master’s Program Human Technology Interaction. Eindhoven University of Technology – Department of Technology Management.
Ebrahimi, S. A., Zarei, A. & Bahrami, A. (2019). The impact of store atmosphere and service convenience on purchase behavior by the mediation of consumer satisfaction in retail chain stores. Journal of Business Administration Researches, 11 (21), 163-180. (in Persian)
Ebster, C. & Garaus, M. (2015). Store design and visual merchandising. Business Expert Press.
Farias, S., Aguiar, E. C. & Melo, F. V. S. (2014). Store atmospherics and experiential marketing: a conceptual framework and research propositions for an extraordinary customer experience. International Business Research, 7 (2), 87-99.
Graham, C., Khan, K. & Ilyas, M. (2019). Estimating the value of passing trade from pedestrian density, Journal of Retailing and Consumer Services, 46, 103-111.
Kotler, P. & Keller, K. (2016). Marketing Management. 15th edition. Prentice Hall.
Kotler, P. (1973). Atmospherics as a marketing tool. Journal of Retailing. 49(4), 48– 64.
Levy, M. & Weitz, B. (2007). Retail Management, 7th Edition. McGrawHill Irwin, New York.
Li, C. (2010). A facility layout design methodology for retail environments, Doctoral Dissertation, University of Pittsburgh. Pittsburgh
Mathur, M. & Goswami, S. (2014). Store atmospheric factors driving customer purchase intention- an exploratory study. Journal of Management Research, 6(2), 111-117.
Mowrey, C. H., Parikh, P. J. & Gue, K. R. (2018). A model to optimize rack layout in a retail store. European Journal of Operational Research, 271 (3), 1100-1112.
Nabi, M.D. (2013). Store location, design and visual merchandising. Pondicherry University http://www.pondiuni.edu.in/sites/default/files/Store%20Location%2C%20design%20and%20visual%20merchandisingt200813.pdf.
Newman, A. J., Yu, D. K. C. & Oulton, D. P. (2002). New insights into retail space and format planning from customer-tracking data. Journal of Retailing and Consumer Services, 9 (5), 253-258.
Nikbakht, M. J., Moshabaki, A. & Khodadad Hosseini, H. (2015). Exploring the effects of buyer impulsivity factors and in-store environment factors on impulse buying in Chain stores, Journal of Business Management, 7(4), 761-1004 (in Persian).
Ong, F., Khong, K., Yeoh, K., Syuhaily, O. & Nor, O. (2018). A comparison between structural equation modelling (SEM) and Bayesian SEM approaches on in-store behavior. Industrial Management & Data Systems, 118 (1), 41-64.
Page, B., Sharp, A., Lockshin, L. & Sorensen, H. (2018). Parents and children in supermarkets: Incidence and influence. Journal of Retailing and Consumer Services, 40, 31-39.
Page, B., Trinh, G. & Bogomolova, S. (2019). Comparing two supermarket layout: The effect of a middle aisle on basket size, spend, trip duration and endcap use, Journal of Retailing and Consumer Services, 47, 49-56.
Park, S. & Zhang, S. (2019). A pilot study of circulation layout based on perceived retail crowding. Journal of Retailing and Consumer Services, 49, 305-315.
Roth, V. A. (2013). The potential of neuromarketing as a marketing tools, 1stIBA Bachelor Thesis Conference, June 27th, 2013, Enschede, The Netherlands.
Saedi, A. & Mousavi, S. N. (2017). Investigating brand’s social power base effects on purchase behavior: mediating role of consumer’s product cognitive engagement level. Management Research in Iran, 21 (3), 217-241 (in Persian)
Saijo, N., Tosu, T., Morimura, K., Otake, K. & Namatame, T. (2018). Evaluation of store layout using eye tracking data in fashion brand store. International Conference on Social Computing and Social Media, User Experience and Behavior, 131-145.
Scamell-Katz, S. (2012). The art of shopping: how we shop and we buy. LID Publishing, UK.
Shankar, V., Inman, J. J., Mantrala, M., Kelley, E., & Rizley, R. (2011). Innovations in shopper marketing: Current insights and future research issues. Journal of Retailing, 87(1), 29-42.
Sorensen, H., Bogomolova, S., Anderson, K.,Trinh, G., Sharp, A., Kennedy, R., Page, B. & Wright, M. (2017). Fundamental patterns of in-store shopper behavior, Journal of Retailing and Consumer Services, 37, 182-194.
Syaekhoni, M. A., Lee, C. & Kwon, Y. S. (2018). Analyzing customer behavior from shopping path data using operation edit distance. Applied Intelligence, 48 (8), 1912-1932.