طراحی شبکه زنجیره تأمین مواد غذایی مبتنی بر رضایتمندی مشتری در شرایط عدم قطعیت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه مهندسی صنایع، دانشکده فنی مهندسی، دانشگاه جامع امام حسین (ع)، تهران، ایران

2 دانشجو دکتری گروه مهندسی صنایع، دانشکده فنی مهندسی، دانشگاه جامع امام حسین (ع)، تهران، ایران

3 کارشناس علوم و صنایع غذایی، مرکز مطالعات و پژوهش های لجستیکی، تهران، ایران

10.29252/bar.2022.14142.3563

چکیده

در اقتصاد جهان امروز شرکت­ها باید همه فعالیت­ها و توانمندی­های خود را متوجه رضایت مشتری کنند، زیرا مشتریان تنها منبع برگشت سرمایه هستند. از طرفی رضایتمندی مشتریان در شرکت­های تهیه و توزیع کالاهایی با عمر کوتاه به خصوص مواد غذایی، به سبب خصوصیات ویژه و فاسد شدنی محصولات، اهمیت موضوع را دوچندان کرده است. از این رو هدف اصلی این مقاله بیشینه کردن رضایتمندی مشتریان در شبکه زنجیره تأمین مواد غذایی می­باشد. لذا در این مقاله، مدل ریاضی جدیدی برای یکپارچه­سازی تصمیمات تأمین و توزیع اقلام غذایی در شرایط عدم قطعیت (مدت زمان سفر وسیله نقلیه) توسعه داده شده است که اهداف آن، کمینه کردن مجموع زمان­های زودکرد و دیرکرد تحویل سفارشات به مشتریان و بیشینه کردن کیفیت محصولات تحویلی به مشتریان است. مدل ریاضی چند هدفه ارائه داده شده در این مقاله، از نوع مسائل NP-hard است، بنابراین از الگوریتم­ فراابتکاری NSGA-II و یک الگوریتم فراابتکاری دیگر به نام «سفر در طول تاریخ چند هدفی» (MOTTH) برای حل مدل استفاده شده است. به منظور اعتبارسنجی، نتایج این الگوریتم­ها با نتایج حل دقیق روش محدودیت اپسیلون تقویت شده، مقایسه شده است. همچنین نتایج دو الگوریتم NSGA-II و MOTTH  نیز با یکدیگر مقایسه شده است که نتایج مقایسات، نشان­دهنده عملکرد بهتر الگوریتم فراابتکاری MOTTH می­باشد. برای مدل­سازی ریاضی این تحقیق، از منابع موجود در ادبیات و برای حل مدل از دو نرم­افزار GAMS و MATLAB استفاده شده است. 

کلیدواژه‌ها


عنوان مقاله [English]

Designing a food supply chain network based on customer satisfaction under uncertainty

نویسندگان [English]

  • Hossein Ali Hassanpour 1
  • Mohammad Reza Taheri 2
  • Faramarz Mikaeli 3
1 Assistant Professor, Department of Industrial Engineering, Faculty of Engineering, Imam Hussein University, Tehran, Iran
2 PhD Student of Industrial Engineering, Faculty of Engineering, Imam Hussein University, Tehran, Iran
3 Expert in Food Science, Logistics and Supply Chain Studies Center, Tehran, Iran
چکیده [English]

Introduction: In today's world economy, companies must focus all their activities and capabilities on customer satisfaction because customers are the only source of return on investment. Besides, customer satisfaction in supplying and distributing short-lived commodities especially food, due to their special and perishable properties, has doubled the importance of the issue. When a vehicle carries the demand of a number of customers in one shipment, due to the long travel time and the frequent opening of the refrigerator door, the quality of the remaining products in the vehicle decreases and, as a result, the satisfaction of customers reduces. The main purpose of this article is to maximize customer satisfaction in the food supply chain network. The study integrates the decisions of the different parts of a food supply chain under uncertainty. The first part includes food suppliers. Because the studied supply chain is multi-commodity, one supplier is not able to supply all the food. Therefore, it can supply part of the customer needs according to its conditions and expertise. The second part includes the heterogeneous transport fleet, which serves as a VRP problem. Thus, a vehicle can receive food from a supplier and deliver it to customers located in different geographical locations. In addition, the preparation time of vehicles is also considered as a constraint. The transport fleet consists of several refrigerated vehicles with different carrying capacities and speeds. Since one vehicle is not able to carry all the orders, each product, according to the required temperature and storage conditions, must be transported by vehicles specific to that product. Also, due to weather and traffic conditions, the vehicle travel time is not definite. So, in this study, the uncertainty of vehicle travel time (triangular fuzzy) is taken into account too. The third part of this supply chain includes end users, whose geographical location and the amount of demand of each is definite and specific. There is a time window like (x,y) for each user. If the orders are delivered to the customer before time x, it will cause earliness. If it is delivered after time y, it will cause tardiness. The objectives of this study are minimizing the sum of tardiness and earliness of deliveries to customers and maximizing the quality of products delivered to them.
Methodology: A mathematical model of the problem is presented, and the augmented ε constraint method is used to solve the model. It has been shown that the exact solution method cannot solve large-scale problems within a reasonable time. Therefore, meta-heuristic algorithms should be used. This research has presented the MOTTH meta-heuristic algorithm, which is a new development of the genetic algorithm and is inspired by the long-standing human desire to travel throughout history. In this algorithm, the best solutions of the current generation replace the worst solutions of R generations, and, thus, the algorithm’s premature convergence is prevented and more solutions are searched in the solution area.
Results and Discussion: As the mathematical model was solved through the augmented ε constraint method, the relationship between the two objective functions was explained. It was also shown that an increase in the quality of the products delivered to customers leads to a rise in the sum of the tardiness and earliness of deliveries to customers. Therefore, considering the importance of each of the objective functions, every company should establish a balance between the two objective functions.
For validation, the results of the NSGA-II and MOTTH algorithms were compared with those of the exact solution of the augmented  constraint method. The results of the algorithms were also compared. It was shown that the MOTTH meta-heuristic algorithm performs better. For the mathematical modeling of this research and for solving the model, the resources available in the literature and the GAMS and MATLAB software programs were used respectively.
Conclusion: According to the results of this study, a practical suggestion for frozen food supply chain managers is to use the MOTTH algorithm. This algorithm offers better solutions than the NSGA-II algorithm, the sum of tardiness and earliness of deliveries to customers is less, and the quality of the products delivered to customers remains higher. Moreover, the use of frozen food trucks partitioned with separate doors and equipped with cooling systems is another practical suggestion of this research; if the door of a partition is opened and the products are emptied, the other products in the other partitions will not receive a heat shock and their quality does not decline.

کلیدواژه‌ها [English]

  • Perishable items
  • Supply chain
  • Meta-heuristic algorithm
  • Augmented  constraint
  • Food
Ahmadi, D. K., & Abdollahzadeh. M. S. (2019). Integrated mathematical model for optimizing the production-distribution system of the supply chain of perishable goods with intermediate warehouses. Production and Operations Management, 10 (2), 37-53.
Akkerman, R., Farahani, P., & Grunow. M. (2010). Quality, safety and sustainability in food distribution: a review of quantitative operations management approaches and challenges. OR Spectrum, 32(4), 863-904.
Babaei, T. E., Sailpour, S. & Mir Mohammadi. H. (2014). The problem of routing heterogeneous vehicles with multiple distribution points and limited time periods for perishable goods. Supply Chain Management, 16 (44), 14-23.
Belenguer, J. M., Benavent, E., & Martínez. M. C. (2005). RutaRep: a computer package to design dispatching routes in the meat industry. Journal of food engineering, 70(3), 435-445.
Carson, J. K., & East. A. R. (2018). The cold chain in New Zealand–A review. International Journal of Refrigeration, 87, 185-192.
Chang, Y. C., & Lee. C. Y. (2004). Machine scheduling with job delivery coordination. European Journal of Operational Research, 158(2), 470-487.
Chankong, V., & Haimes. Y. (1983). Multi-objective Decision Making Theory and Methodology. Elsevier Science, New York.
Deb, K., Pratap, A., Agarwal, S., & Meyarivan. T. A. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182-197.
Faizi, A. (2018). Designing a mathematical model for planning transportation and storage of edible crude oil. Elite of Science and Engineering, 10 (3), 94-103.
Ghare, P. M., & Schrader. G. F. (1963). An inventory model for exponentially deteriorating items. Journal of Industrial Engineering, 14(2), 238-243.
Ghomi-Avili, M., Khosrojerdi, A., & Tavakkoli-Moghaddam. R. (2019). A multi-objective model for the closed-loop supply chain network design with a price-dependent demand, shortage and disruption. Journal of Intelligent & Fuzzy Systems, 36(6), 5261-5272.
Gustavsson, J., Cederberg, C., Sonesson, U., Van Otterdijk, R., & Meybeck. A. (2011). Global food losses and food waste. The Swedish Institute for Food and Biotechnology, Save Food Congress, Düsseldorf 16 May 2011.
Hsu, C. I., Hung, S. F., & Li. H. C. (2007). Vehicle routing problem with time-windows for perishable food delivery. Journal of food engineering, 80(2), 465-475.
Jiménez, M., Arenas, M., Bilbao, A., & Rodrı. M.V. (2007). Linear programming with fuzzy parameters: an interactive method resolution. European Journal of Operational Research, 177(3), 1599-1609.
Joshi, K., Warby, J., Valverde, J., Tiwari, B., Cullen, P. J., & Frias, J. M. (2018). Impact of cold chain and product variability on quality attributes of modified atmosphere packed mushrooms (Agaricus bisporus) throughout distribution. Journal of Food Engineering, 232, 44-55.
Labuza, T. P. (1982). Shelf-life dating of foods. Food & Nutrition Press, Inc.
Lesmawati, W., Rahmi, A., & Mahmudy. W.F. (2016). Optimization of frozen food distribution using genetic algorithms. Journal of enviromental engineering and sustainable technology, 3(1), 51-58.
Li, L., Yao, F., & Niu. B. (2013). DEABC algorithm for perishable goods vehicle routing problem. In International Conference on Intelligent Computing Springer, Berlin, Heidelberg, 624-632.
Li, Z. P., & Wang. S. (2013). Research on end distribution path problem of dairy cold chain. In The 19th International Conference on Industrial Engineering and Engineering Management, Springer, Berlin, Heidelberg, 983-992.
Liu, H., Pretorius, L., & Jiang. D. (2018). Optimization of cold chain logistics distribution network terminal. EURASIP Journal on Wireless Communications and Networking, 18(1), 1-9.
Mavrotas, G. (2009). Effective implementation of the ε-constraint method in multi-objective mathematical programming problems. Applied mathematics and computation, 213(2), 455-465.
Mohebalizadehgashti, F., Zolfagharinia, H., & Amin. S. H. (2020). Designing a green meat supply chain network: A multi-objective approach. International Journal of Production Economics, 219, 312-327.
Musavi, M., & Bozorgi-Amiri. A. (2017). A multi-objective sustainable hub location-scheduling problem for perishable food supply chain. Computers & Industrial Engineering, 113, 766-778.
Ndraha, N., Sung, W. C., & Hsiao. H. I. (2019). Evaluation of the cold chain management options to preserve the shelf life of frozen shrimps: A case study in the home delivery services in Taiwan. Journal of food engineering, 242, 21-30.
Nedović, V., Raspor, P., Lević, J., Šaponjac, V. T., & Barbosa-Cánovas. G. V. (2016). Emerging and traditional technologies for safe, healthy and quality food. Springer International Publishing, 257-268.
Osvald, A., & Stirn. L. Z. (2008). A vehicle routing algorithm for the distribution of fresh vegetables and similar perishable food. Journal of food engineering, 85(2), 285-295.
Peidro, D., Mula, J., Jiménez, M., & Botella. M. (2010). A fuzzy linear programming based approach for tactical supply chain planning in an uncertainty environment. European Journal of Operational Research, 205(1), 65-80.
Peidro, D., Mula, J., Poler, R., & Verdegay. J. L. (2009). Fuzzy optimization for supply chain planning under supply, demand and process uncertainties. Fuzzy sets and systems, 160(18), 2640-2657.
Sirait, K. J., Suwilo, S., & Mardiningsih. M. (2017). Vehicle Routing Problem for Delivery Perishable Food. Bulletin of Mathematics, 9(01), 9-25.
Srinivas, N., & Deb. K. (1994). Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary computation, 2(3), 221-248.
Song, B. D., & Ko. Y. D. (2016). A vehicle routing problem of both refrigerated-and general-type vehicles for perishable food products delivery. Journal of food engineering, 169, 61-71.
Taheri, M. R., & Beheshtinia. M. A. (2019). A Genetic Algorithm Developed for a Supply Chain Scheduling Problem. Iranian Journal of Management Studies, 12(2), 107-132.
Tarantilis, C. D., & Kiranoudis. C. T. (2001). A meta-heuristic algorithm for the efficient distribution of perishable foods. Journal of food Engineering, 50(1), 1-9.
Tarantilis, C. D., & Kiranoudis. C. T. (2002). Distribution of fresh meat. Journal of Food Engineering, 51(1), 85-91.
Ullrich. C. A. (2013). Integrated machine scheduling and vehicle routing with time windows. European Journal of Operational Research, 227(1), 152-165.
Vakili, P., Hosseini Motlagh, M., Gholamian, M., & Jokar. A. (2017). Provide a mathematical model of routing-multi-product inventory for pharmaceutical items in a cold supply chain and an innovative solution method based on adaptive neighborhood search. Journal of Industrial Management. 9(2), 407-383.
Wang, S., Tao, F., Shi, Y., & Wen. H. (2017). Optimization of vehicle routing problem with time windows for cold chain logistics based on carbon tax. Sustainability, 9(5), 694.
Wang, S. Y., & Sun. H. (2015). Distribution Route Planning for Cold Chain Items under Variable Demand. Journal of Highway and Transportation Research and Development, 9(2), 103-110.
Wang, Y., & ying Yu. L. (2012). Optimization model of refrigerated food transportation. In ICSSSM12, 220-224.