شناسایی و اولویت‌بندی کاربردهای هوش مصنوعی در بازاریابی برخط

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مدیریت فناوری‌اطلاعات دانشکده مدیریت، دانشگاه تهران، تهران، ایران

2 دانشیار گروه مدیریت، دانشگاه حضرت معصومه (س)، قم، ایران

3 استادیار بخش مدیریت صنعت و فناوری، دانشکده مدیریت و حسابداری، پردیس فارابی دانشگاه تهران، قم، ایران

10.22034/jbar.2022.15783.3850

چکیده

 کاربردهای هوش مصنوعی در بازاریابی برخط انقلابی در این عرصه ایجاد کرده است که همین موضوع توجه بسیاری از سرمایه‌گذاران و مدیران  بازاریابی را به این حوزه جلب کرده است. با این ‌وجود کمتر پژوهشی به این موضوع پرداخته و هدف از این پژوهش شناسایی کاربردهای هوش مصنوعی در جنبه‌های مختلف بازاریابی برخط و اولویت‌بندی این کاربردهاست. این پژوهش با استفاده از روش آمیخته صورت گرفته و در مرحله کیفی از طریق ده مصاحبه‌ نیمه ساختاریافته با خبرگان حوزه بازاریابی آنلاین، هوش مصنوعی و بازاریابی الکترونیکی و با روش تحلیل مضمون، چهل کاربرد هوش مصنوعی در بازاریابی برخط احصا و در چهار بخش بر مبنای آمیخته بازاریابی دسته‌بندی ‌شده‌اند. در مرحله کمی، با استفاده از پرسشنامه و با روش تجزیه‌وتحلیل بهترین-بدترین، کاربردهای شناسایی‌شده در مرحله کیفی، با استفاده از نظرات خبرگان صنعت و دانشجویان دانشگاه‌های مطرح ایران که آشنا با حوزه هوش مصنوعی و بازاریابی برخط بوده‌اند، اولویت‌بندی شده‌اند. در انتها چهار حوزه طراحی محصول و خلق ارزش، قیمت‌گذاری و طراحی هزینه‌ها، تبلیغات و اطلاع‌رسانی به مشتریان و توزیع محصول به‌عنوان چهار حوزه کلی شناسایی شد که ۴۰ کاربرد یافت شده در این چهار حوزه تقسیم و اولویت‌بندی شدند که از میان آن‌ها شخصی‌سازی تبلیغات متناسب با رفتار پیشین کاربران و تحلیل احساسات مشتریان در رابطه با تبلیغات دارای بالاترین اولویت و همچنین توزیع نیروهای توزیع در شعب توزیع متناسب با پیش‌بینی فشار کاری هر کدام از شعب دارای کمترین اولویت بود.

کلیدواژه‌ها


عنوان مقاله [English]

Identifying and prioritizing artificial intelligence (AI) applications in online marketing

نویسندگان [English]

  • Seyyed Morteza Yazdanparast, 1
  • Mona Jami Pour 2
  • Seyed Mohammadbagher Jafari 3
1 Ph.D. Student in Information Technology Management, Faculty of Management University of Tehran, Iran
2 Associate Professor, Department of Management, Faculty of Management, Hazrat-e Ma’soumeh University (HMU), Qom, Iran
3 Assistant Professor, Department of Industrial and Technology Management, Faculty of Management and Accounting, College of Farabi, University of Tehran, Qom, Iran
چکیده [English]

Introduction: The application of artificial intelligence (AI) in online marketing has created a revolution in this field, which has attracted the attention of many investors and marketing managers in this field. AI marketing uses artificial intelligence technologies to make automated decisions based on data collection, data analysis, and additional observations of audience or economic trends that may impact marketing efforts. AI is often used in marketing efforts where speed is essential. Since little research has been done on this issue, and the purpose of this research is to identify the applications of artificial intelligence in various aspects of online marketing and prioritize these applications.
 The present research is thematically one of the first studies that applies artificial intelligence in online marketing. There has been no comprehensive and continuous view of the entire chain of attraction, persuasion, sales, and after-sales services. Thus, this research provides a comprehensive view of its audience by examining all the members of it.
Methods: This research was been conducted using a mixed method. In the qualitative stage, there were ten semi-structured interviews with experts in online marketing, artificial intelligence, and e-marketing. With the content analysis method, forty applications of artificial intelligence in online marketing were enumerated in four sections. They were categorized based on the marketing mix. The marketing mix refers to the set of actions or tactics that a company uses to promote its brand or product in the market. a typical marketing mix of price, roduct, Promotion, and Place.
 In the quantitative stage, using a questionnaire and the best-worst analysis method, the applications identified in the qualitative stage have been prioritized using the opinions of industry experts and the students of prominent Iranian universities familiar with artificial intelligence and online marketing. Best Worst Method (BWM) is a multi-criteria decision-making (MCDM) based on a systematic pairwise comparison of the decision criteria used to evaluate a set of alternatives with respect to a set of decision criteria. The salient feature of the BWM is that it uses a structured way to generate pairwise comparisons, which leads to reliable results.
Results and Discussion: Product design and value creation, pricing and cost design, advertising and customer information, and product distribution were identified as four general areas in which 40 applications were classified and prioritized. Finally, nine applications were identified in the field of product design and value creation, nine applications in the field of pricing and cost design, and 16 applications in the field of advertising and customer information. In the field of sales place and product supply method, six applications were identified and ranked. Making advertisements in accordance with the previous behavior of users and customers' feelings in relation to advertisements had the highest priority. Also, the distribution of forces in distribution branches in accordance with the forecast of work pressure in each branch had the lowest priority.
Conclusion: This study suggests that, in order to use artificial intelligence in online marketing, various types of artificial intelligence should be applied in the marketing mix matrix. A comprehensive review of the most appropriate solutions for the organization is needed to maximize the effectiveness and efficiency of the solutions in the organization.
Considering the prioritization of different parts of the marketing mix, it should be noted that businesses should pay special attention to the use of artificial intelligence applications in online marketing in the field of advertising and customer information. Then, a focus should be placed on product design and value proposition, which leads to market knowledge and user interaction. After these two areas, pricing and cost design have almost the same weight as product design and value proposition, which shows their equal importance in this sector. The developed framework provides a comprehensive view of artificial intelligence in online marketing and helps organizations comprehensively identify solutions and prioritize them. Therefore, using the methods found here can solve a large percentage of marketing problems and guide businesses to achieve their marketing goals.
This research can also be used as a tool to comprehensively evaluate the performance of organizations in using artificial intelligence in online marketing. By designing a scoring model based on the weights obtained in this study, it is easy to determine the status of companies in different industries and with different conditions in the use of artificial intelligence in online marketing and in accordance with the priorities. This approach will also help many traditional companies that have some online marketing techniques to design and optimize their marketing system as optimally as possible.

کلیدواژه‌ها [English]

  • Artificial intelligence
  • Online marketing
  • Prioritization
  • Best-Worst Method
Abd-Allah, M. N., Salah, A., & El-Beltagy, S. R. (2014, November). Enhanced customer churn prediction using social network analysis. In Proceedings of the 3rd Workshop on Data-Driven User Behavioral Modeling and Mining from Social Media (pp. 11-12).
Ahani, A., Nilashi, M., Ibrahim, O., Sanzogni, L., & Weaven, S. (2019). Market segmentation and travel choice prediction in Spa hotels through TripAdvisor’s online reviews. International Journal of Hospitality Management, 80, 52-77.
Aloysius, G., & Binu, D. (2013). An approach to products placement in supermarkets using PrefixSpan algorithm. Journal of King Saud University-Computer and Information Sciences, 25(1), 77-87.
Alonso، J. M.، Castiello، C.، & Mencar، C. (2018). A bibliometric analysis of the explainable artificial intelligence research field. Communications in Computer and Information Science، 853، 3–15.
Alsheikh, M. A., Hoang, D. T., Niyato, D., Leong, D., Wang, P., & Han, Z. (2020). Optimal pricing of Internet of Things: A machine learning approach. IEEE Journal on Selected Areas in Communications.
Ban, G. Y., & Keskin, N. B. (2020). Personalized dynamic pricing with machine learning: High dimensional features and heterogeneous elasticity. Available at SSRN 2972985.
Barnes Jr, M. L. (2009). U.S. Patent No. 7,487,112. Washington, DC: U.S. Patent and Trademark Office.
Bassano, C., Barile, S., Saviano, M., Pietronudo, M. C., & Cosimato, S. (2020, January). AI Technologies & Value Co-Creation in Luxury Context. In Proceedings of the 53rd Hawaii International Conference on System Sciences.
Bateman, S. (2018). U.S. Patent No. 9,953,332. Washington, DC: U.S. Patent and Trademark Office.
Behera, R. K., Gunasekaran, A., Gupta, S., Kamboj, S., & Bala, P. K. (2020). Personalized digital marketing recommender engine. Journal of Retailing and Consumer Services, 53, 101799.
Bhavana, B., Reddy, K. S. P., Sailaja, P., & Raju, C. S. (2020). Machine Learning Model for Predicting Purchase Nature of Customer. Sustainable Humanosphere, 16(1), 2113-2119.
Blackhurst, J., & Upton, M. W. (2011). U.S. Patent Application No. 13/152,052.
Bleakley, D. O., Demmler, L. M., Desai, A. A., Etgen, M. P., & Kenna, S. (2020). U.S. Patent Application No. 16/681,798.
Busemann, S., Schmeier, S., & Arens, R. G. (2000, April). Message classification in the call center. In Proceedings of the sixth conference on Applied natural language processing (pp. 158-165). Association for Computational Linguistics.
Cannon, M. E. (2001). U.S. Patent No. 6,286,005. Washington, DC: U.S. Patent and Trademark Office.
Caralis, J., Kogan, N., Nakamura, M., Mastroianni, M., & Sundram, J. (2020). U.S. Patent No. 10,529,004. Washington, DC: U.S. Patent and Trademark Office.
Chang, C. T., Chu, X. Y. M., & Tsai, I. T. (2020). How Cause Marketing Campaign Factors Affect Attitudes and Purchase Intention: Choosing the Right Mix of Product And Cause Types with Time Duration. Journal of Advertising Research.
Chen, S. (2020). The Emerging Trend of Accurate Advertising Communication in the Era of Big Data—The Case of Programmatic, Targeted Advertising. In Advances in Intelligent Information Hiding and Multimedia Signal Processing (pp. 299-308). Springer, Singapore.
Chen, Q., & Chen, H. M. (2004). Exploring the success factors of eCRM strategies in practice. Journal of Database Marketing & Customer Strategy Management, 11(4), 333-343.
Chen, S. (2020). The Emerging Trend of Accurate Advertising Communication in the Era of Big Data—The Case of Programmatic, Targeted Advertising. In Advances in Intelligent Information Hiding and Multimedia Signal Processing (pp. 299-308). Springer, Singapore.
Chiramel, S., Logofătu, D., Rawat, J., & Andersson, C. (2020, March). Efficient Approaches for House Pricing Prediction by Using Hybrid Machine Learning Algorithms. In Asian Conference on Intelligent Information and Database Systems (pp. 85-94). Springer, Singapore.
Chow, V. (2020). Predicting auction price of vehicle license plate with deep recurrent neural network. Expert Systems with Applications, 142, 113008.
Cochran, L., Miller, D. R., Stevens, J., & Nelson, M. (2020). U.S. Patent Application No. 16/536,826.
Cui, G., Lui, H. K., & Guo, X. (2012). The effect of online consumer reviews on new product sales. International Journal of Electronic Commerce, 17(1), 39-58.
Demir, S., Mincev, K., Kok, K., & Paterakis, N. G. (2020). Introducing Technical Indicators to Electricity Price Forecasting: A Feature Engineering Study for Linear, Ensemble, and Deep Machine Learning Models. Applied Sciences, 10(1), 255.
Dey, P., Ekambaram, V., Joshi, V., & Narayanam, R. (2020). U.S. Patent No. 10,528,985. Washington, DC: U.S. Patent and Trademark Office.
Dolnicar، Sara. 2008. “Market Segmentation in Tourism.” In Tourism Management—Analysis، Behaviour and Strategy، edited by A. Woodside and D. Martin، 129–50. Cambridge، UK: CABI.
Ene, S., & Öztürk, N. (2012). Storage location assignment and order picking optimization in the automotive industry. The international journal of advanced manufacturing technology, 60(5-8), 787-797.
Fang, C., Lu, H., Hong, Y., Liu, S., & Chang, J. (2020). Dynamic Pricing for Electric Vehicle Extreme Fast Charging. IEEE Transactions on Intelligent Transportation Systems.
Feng, G., Polson, N. G., & Xu, J. (2018). Deep learning in asset pricing. arXiv preprint arXiv:1805.01104.
Fernandez, R. R., & Uy, C. (2020). Keywords on Online Video-ads Marketing Campaign: A Sentiment Analysis. Review of Integrative Business and Economics Research, 9, 99-110.
Grzonka, D., Suchacka, G., & Borowik, B. (2016). Application of selected supervised classification methods to bank marketing campaign. Information Systems in Management, 5(1), 36-48.
Guo, H., Woodruff, A., & Yadav, A. (2020). Improving Lives of Indebted Farmers Using Deep Learning: Predicting Agricultural Produce Prices Using Convolutional Neural Networks. In Thirty-Fourth IAAI Conference.
Gupta, S., Chetwani, S., & Akhtar, W. S. (2020). U.S. Patent Application No. 16/022,249.
Gutierrez، B. (2019). Demystifying Market Basket Analysis. [online] Information Management. Retrieved 1 Sep. 2019 from: https://www.information-management.com/news/demystifying-market-basket-analysis .
Hemalatha, M., Furzana, S. T., & Nayaki, S. S. (2014). Application of Datamining for estimating the marketing success of the women entrepreneurs. Journal of Contemporary Research in Management, 9(2).
Hernandez-Nieves, E., Hernández, G., Gil-González, A. B., Rodríguez-González, S., & Corchado, J. M. (2020). Fog computing architecture for personalized recommendation of banking products. Expert Systems with Applications, 140, 112900.
Huang, J. J., Tzeng, G. H., & Ong, C. S. (2007). Marketing segmentation using support vector clustering. Expert systems with applications, 32(2), 313-317.
Huang, J. Y., & Liu, J. H. (2020). Using social media mining technology to improve stock price forecast accuracy. Journal of Forecasting, 39(1), 104-116.
Hussain, S. S., Peter, C., & Bieber, G. (2009). Emotion Recognition on the Go: Providing personalized services based on emotional states. Proc. Mobile HCI 2009, 1-4.
Jacobsen, M. R., Knittel, C. R., Sallee, J. M., & Van Benthem, A. A. (2020). The use of regression statistics to analyze imperfect pricing policies. Journal of Political Economy, 128(5), 1826-1876.
Jarek، K.، & Mazurek، G. (2019). Marketing and Artificial Intelligence. Central European Business Review، 8(2)، 46.
Jha, N., Parekh, D., Mouhoub, M., & Makkar, V. (2020, May). Customer Segmentation and Churn Prediction in Online Retail. In Canadian Conference on Artificial Intelligence (pp. 328-334). Springer, Cham.
Jonquais, A., & Krempl, F. (2019). Predicting Shipping Time with Machine Learning.
Karmaker, C., & Saha, M. (2015). Optimization of warehouse location through fuzzy multi-criteria decision making methods. Decision Science Letters, 4(3), 315-334.
Kashwan, K. R., & Velu, C. M. (2013). Customer segmentation using clustering and data mining techniques. International Journal of Computer Theory and Engineering, 5(6), 856.
Kaya, A., Keceli, A. S., Catal, C., & Tekinerdogan, B. (2020). Model analytics for defect prediction based on design-level metrics and sampling techniques. In Model Management and Analytics for Large Scale Systems (pp. 125-139). Academic Press.
Kaya, S. Ş., Çavdaroğlu, B., & Şensoy, K. S. (2020). Detection of Click Spamming in Mobile Advertising. In Advances in Operational Research in the Balkans (pp. 251-263). Springer, Cham.
Kephart, J. O., Hanson, J. E., & Greenwald, A. R. (2000). Dynamic pricing by software agents. Computer Networks, 32(6), 731-752.
Khajvand, M., & Tarokh, M. J. (2011). Estimating customer future value of different customer segments based on adapted RFM model in retail banking context. Procedia Computer Science, 3, 1327-1332.
Kietzmann, J., Paschen, J., & Treen, E. (2018). Artificial intelligence in advertising: How marketers can leverage artificial intelligence along the consumer journey. Journal of Advertising Research, 58(3), 263-267.
Kim, J. W., Lee, B. H., Shaw, M. J., Chang, H. L., & Nelson, M. (2001). Application of decision-tree induction techniques to personalized advertisements on internet storefronts. International Journal of Electronic Commerce, 5(3), 45-62.
Klumpp, M. (2018). Automation and artificial intelligence in business logistics systems: human reactions and collaboration requirements. International Journal of Logistics Research and Applications, 21(3), 224-242.
Kvale، S. (1996). Interviews: An Introduction to Qualitative Research Interviewing. Sage Publications.
Kulkarni, K. K., Kalro, A. D., Sharma, D., & Sharma, P. (2020). A typology of viral ad sharers using sentiment analysis. Journal of Retailing and Consumer Services, 53.
Kulkarni, G., Kannan, P. K., & Moe, W. (2012). Using online search data to forecast new product sales. Decision Support Systems, 52(3), 604-611.
Kumar, P. A., Agrawal, S., Barua, K., Pandey, M., Shrivastava, P., & Mishra, H. (2020). Dynamic Rule-Based Approach for Shelf Placement Optimization Using Apriori Algorithm. In Frontiers in Intelligent Computing: Theory and Applications (pp. 228-237). Springer, Singapore.
Kuvalekar, A., Manchewar, S., Mahadik, S., & Jawale, S. (2020). House Price Forecasting Using Machine Learning. Available at SSRN 3565512.
Li، B. H.، Hou، B. C.، Yu، W. T.، Lu، X. B.، & Yang، C. W. (2017). Applications of artificial intelligence in intelligent manufacturing: a review. Frontiers of Information Technology & Electronic Engineering، 18(1) 86-96.
Li, K., & Du, T. C. (2012). Building a targeted mobile advertising system for location-based services. Decision Support Systems, 54(1), 1-8.
Li, X., Wu, P., & Wang, W. (2020). Incorporating stock prices and news sentiments for stock market prediction: A case of Hong Kong. Information Processing & Management, 102212.
Li, X., Zheng, Y., Zhou, Z., & Zheng, Z. (2019). Demand Prediction, Predictive Shipping, and Product Allocation for Large-scale E-commerce. Predictive Shipping, and Product Allocation for Large-Scale E-Commerce (March 12, 2019).
Lichtenthaler, U. (2020). Beyond artificial intelligence: why companies need to go the extra step. Journal of Business Strategy.
Lilien، G. L.، and A. Rangaswamy. 2004. Marketing Engineering: Computer-Assisted Marketing Analysis and Planning. 2nd ed. Upper Saddle River، NJ: Prentice Hall، DecisionPro.
Lin, T. T., & Bautista, J. R. (2020). Content-related factors influence perceived value of location-based mobile advertising. Journal of Computer Information Systems, 60(2), 184-193.
Linden, J., & Teeter, T. (2012). U.S. Patent No. 8,321,269. Washington, DC: U.S. Patent and Trademark Office.
Liu, F., Li, M., Zhang, R., Zhang, H., & Xu, Z. (2008, June). Remaining Delivery Time Estimation Based Routing for Intermittently Connected Mobile Networks. In 2008 The 28th International Conference on Distributed Computing Systems Workshops (pp. 222-227). IEEE.
Lopes, F., Agnelo, J., Teixeira, C. A., Laranjeiro, N., & Bernardino, J. (2020). Automating orthogonal defect classification using machine learning algorithms. Future Generation Computer Systems, 102, 932-947.
Lu, H., Ma, X., Huang, K., & Azimi, M. (2020). Carbon trading volume and price forecasting in China using multiple machine learning models. Journal of Cleaner Production, 249, 119386.
Manna, A., Sengupta, A., & Mazumdar, C. (2020). A Quantitative Methodology for Business Process-Based Data Privacy Risk Computation. In Advanced Computing and Systems for Security (pp. 17-33). Springer, Singapore.
Mehra, R., & Iyer, M. (2020). AI-Driven Prognosis and Diagnosis for Personalized Healthcare Services: A Predictive Analytic Perspective. In Handbook of Research on Advancements of Artificial Intelligence in Healthcare Engineering (pp. 124-162). IGI Global.
Mogaji, E., Olaleye, S., & Ukpabi, D. (2020). Using AI to personalise emotionally appealing advertisement. In Digital and Social Media Marketing (pp. 137-150). Springer, Cham.
 
Molitor, D., Spann, M., Ghose, A., & Reichhart, P. (2020). Measuring the effectiveness of location-based advertising: A randomized field experiment. Available at SSRN 2645281.
Montague, J. E. (2005). U.S. Patent No. 6,954,731. Washington, DC: U.S. Patent and Trademark Office.
Nayak, M., & Narain, B. (2020). Big Data Mining Algorithms for Predicting Dynamic Product Price by Online Analysis. In Computational Intelligence in Data Mining (pp. 701-708). Springer, Singapore.
Neethu, M. S., & Rajasree, R. (2013, July). Sentiment analysis in twitter using machine learning techniques. In 2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT) (pp. 1-5). IEEE.
Nturambirwe, J. F. I., & Opara, U. L. (2020). Machine learning applications to non-destructive defect detection in horticultural products. Biosystems Engineering, 189, 60-83.
Pantano, E., & Pizzi, G. (2020). Forecasting artificial intelligence on online customer assistance: Evidence from chatbot patents analysis. Journal of Retailing and Consumer Services, 55, 102096.
Paparrizos, I., Cambazoglu, B. B., & Gionis, A. (2011, October). Machine learned job recommendation. In Proceedings of the fifth ACM Conference on Recommender Systems (pp. 325-328).
Park, H. (2020). MLP modeling for search advertising price prediction. Journal of Ambient Intelligence and Humanized Computing, 11(1), 411-417.
Park, Y. (2014). U.S. Patent No. 8,750,489. Washington, DC: U.S. Patent and Trademark Office.
Perrone, G., Roma, P., & Nigro, G. L. (2010). Designing multi-attribute auctions for engineering services procurement in new product development in the automotive context. International Journal of Production Economics, 124(1), 20-31.
Prasasti, N., Okada, M., Kanamori, K., & Ohwada, H. (2014, April). Customer lifetime value and defection possibility prediction model using machine learning: An application to a cloud-based software company. In Asian Conference on Intelligent Information and Database Systems (pp. 62-71). Springer, Cham.
Rai, Y., Raj, A., Sah, K. S., & Sinha, A. (2020). AIRUYA-A Personal Shopping Assistant. In International Conference on Innovative Computing and Communications (pp. 435-442). Springer, Singapore.
Raju, C. V. L., Narahari, Y., & Ravikumar, K. (2006). Learning dynamic prices in electronic retail markets with customer segmentation. Annals of Operations Research, 143(1), 59-75.
Rambocas, M., & Gama, J. (2013). Marketing research: The role of sentiment analysis (No. 489). Universidade do Porto, Faculdade de Economia do Porto.
Rezaei, J. (2015), “Best-worst multi-criteria decision-making method”, Omega, Vol. 53, pp. 49–57.
Shaha, A., & Tripathy, B. K. (2020). Optimization of Target Oriented Network Intelligence Collection for the Social Web by Using k-Beam Search. In Soft Computing for Problem Solving (pp. 135-144). Springer, Singapore.
Shukla, A., Gullapuram, S. S., Katti, H., Kankanhalli, M., Winkler, S., & Subramanian, R. (2020). Recognition of Advertisement Emotions with Application to Computational Advertising. IEEE Transactions on Affective Computing.
Seo، Y.، Kim، S.، Kisi، O.، & Singh، V. P. (2015). Daily water level forecasting using wavelet decomposition and artificial intelligence techniques. Journal of Hydrology، 520 224-243.
Settemsdal، S. (2019، April). Machine Learning and Artificial Intelligence as a Complement to Condition Monitoring in a Predictive Maintenance Setting. In SPE Oil and Gas India Conference and Exhibition. Society of Petroleum Engineers.
Siau, K., & Yang, Y. (2017, May). Impact of artificial intelligence, robotics, and machine learning on sales and marketing. In Twelve Annual Midwest Association for Information Systems Conference (MWAIS 2017) (pp. 18-19).
Soriano, J., Au, T., & Banks, D. (2013). Text mining in computational advertising. Statistical Analysis and Data Mining: The ASA Data Science Journal, 6(4), 273-285.
Stafford Jr, D. E., & Rossbach, K. (2020). U.S. Patent No. 10,600,081. Washington, DC: U.S. Patent and Trademark Office.
Subhiksha, S., Thota, S., & Sangeetha, J. (2020). Prediction of Phone Prices Using Machine Learning Techniques. In Data Engineering and Communication Technology (pp. 781-789). Springer, Singapore.
Sudha، L.، Dillibabu، R.، Srinivas، S. S.، & Annamalai، A. (2016). Optimization of process parameters in feed manufacturing using artificial neural network. Computers and electronics in agriculture، 120، 1-6.
Sun, B., Li, S., & Zhou, C. (2006). “Adaptive” learning and “proactive” customer relationship management. Journal of interactive Marketing, 20(3-4), 82-96.
Sun, W., & Wang, Y. (2020). Factor analysis and carbon price prediction based on empirical mode decomposition and least squares support vector machine optimized by improved particle swarm optimization. Carbon Management, 1-15.
Tang, L., Zhang, C., Li, L., & Wang, S. (2020). A multi-scale method for forecasting oil price with multi-factor search engine data. Applied Energy, 257, 114033.
Tang, M., Pellom, B., & Hacioglu, K. (2003, December). Call-type classification and unsupervised training for the call center domain. In 2003 IEEE Workshop on Automatic Speech Recognition and Understanding (IEEE Cat. No. 03EX721) (pp. 204-208). IEEE.
Thiongane, M., Chan, W., & L’Ecuyer, P. (2020). Delay Predictors in Multi-skill Call Centers: An Empirical Comparison with Real Data. In International Conference on Operations Research and Enterprise Systems: ICORES.
Tomassen, M. E. (2016). Exploring the black box of machine learning in human resource management: an hr perspective on the consequences for hr professionals (Master's thesis, University of Twente).
Tsai, C. Y., & Chiu, C. C. (2004). A purchase-based market segmentation methodology. Expert Systems with Applications, 27(2), 265-276.
Vafeiadis, T., Diamantaras, K. I., Sarigiannidis, G., & Chatzisavvas, K. C. (2015). A comparison of machine learning techniques for customer churn prediction. Simulation Modelling Practice and Theory, 55, 1-9.
Van Nguyen, T., Zhou, L., Chong, A. Y. L., Li, B., & Pu, X. (2020). Predicting customer demand for remanufactured products: A data-mining approach. European Journal of Operational Research, 281(3), 543-558.
Vatanparast, R., & Butt, A. H. (2010). An empirical study of factors affecting use of mobile advertising. International Journal of Mobile Marketing, 5(1).
Viloria, A., Li, J., Guiliany, J. G., & de la Hoz, B. (2020). Predictive Model for Detecting Customer’s Purchasing Behavior Using Data Mining. In Proceedings of 6th International Conference on Big Data and Cloud Computing Challenges (pp. 45-54). Springer, Singapore.
Wang, H., Nakagawa, N., Kejariwal, A., Koh, J., & Vallis, O. S. (2020). U.S. Patent Application No. 16/505,375.
Wang, Y., Wang, Y., & Luo, X. (2020). Nowcasting in chatbot design: Leveraging service journey patterns to improve user satisfaction.
Wassouf, W. N., Alkhatib, R., Salloum, K., & Balloul, S. (2020). Predictive analytics using big data for increased customer loyalty: Syriatel Telecom Company case study. Journal of Big Data, 7, 1-24.
Wei, Q., Shi, X., Li, Q., & Chen, G. (2020, January). Enhancing Customer Satisfaction Analysis with a Machine Learning Approach: From a Perspective of Matching Customer Comment and Agent Note. In Proceedings of the 53rd Hawaii International Conference on System Sciences.
Wirth، N. Hello marketing، what can artificial intelligence help you with? (2018) International Journal of Market Research، 60 (5)، pp. 435-438.
Xu، G.، Yu، Z.، Yao، H.، Li، F.، Meng، Y.، & Wu، X. (2019). Chinese Text Sentiment Analysis Based on Extended Sentiment Dictionary. IEEE Access.
Yaseen, R. M., Shah, H. J., Bhatia, M., Makkena, M. K., & Gross, K. P. (2014). U.S. Patent Application No. 13/866,946.
Yin، C.، Zhu، Y.، Fei، J.، & He، X. (2017). A deep learning approach for intrusion detection using recurrent neural networks. IEEE Access، 5، 21954-21961.
Zhou, F., Ayoub, J., Xu, Q., & Jessie Yang, X. (2020). A Machine Learning Approach to Customer Needs Analysis for Product Ecosystems. Journal of Mechanical Design, 142(1).