ارایه چارچوبی جهت سنجش ارزش بلندمدت مشتریان در فرآیند مدیریت ارتباط با مشتری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار دانشگاه الزهرا و رئیس موسسه پژوهشی مدیریت مدبر

2 کارشناس ارشد مدیریت بازرگانی دانشگاه الزهرا

چکیده

هدف مقاله ارائه الگویی جامع برای محاسبه ارزش بلند مدت مشتری است . مدیریت ارتباط با مشتری (CRM) ابزاری کارآمد برای به دست آوردن، نگهداری و افزایش رضایت مندی مشتریان در صنایع رقابتی می باشد. یکی از مهم ترین ابزارها در جهت رسیدن به مدیریت ارتباط به مشتری سودآور، محاسبه ارزش بلند مدت مشتری است که باعث می شود سازمان بیشترین تلاش خود را برای حفظ مشتریان با سودآوری بیشتر متمرکز کند. ارزش بلند مدت مشتری مقدار ارزشی است که انتظار
می­رود یک مشتری در یک افق زمانی معین برای سازمان به همراه داشته باشد که بدون شک این ارزش با میزان منفعتی که از این دسته از مشتریان عاید شرکت می­شود ارتباط مستقیم دارد. در این مقاله مدلی برای محاسبه­ی ارزش بلندمدت مشتری ارائه شده است که می­توان به وسیله­ی آن مشتریان را به ترتیب سودآور و غیر سودآور بخش­بندی کرد و عوامل موثر در محاسبه ارزش بلند مدت مشتری بیان شده است که مهمترین عناوین عبارت است از:
نرخ ریزش مشتریان ، ذخایر قانونی ، حاشیه سود ، نرخ تنزیل ، هزینه های مستقیم و غیر مستقیم حساب ها که این عوامل  به صورت متغیرهای ریاضی در الگو ارائه شده است و در پایان این مقاله سعی شده است با استفاده از اطلاعات به دست آمده از صورت های مالی بانک مسکن ایران و استفاده از اطلاعات مدیران ضرورت محاسبه ارزش بلند مدت مشتری را در ارتباط با مدیریت ارتباط با مشتری در عرصه بانکداری بیان کنیم .

کلیدواژه‌ها


عنوان مقاله [English]

Customer segmentation based on customer lifelong value analysis

نویسندگان [English]

  • Abdulmohammad mahdavi 1
  • s. moosavi 2
چکیده [English]

This article presents a comprehensive model for customer lifelong value. Customer relationship management (CRM) is an efficient methodfor acquiring, maintaining and enhancing customer satisfaction in our competitive industries. One of the most important methodsin managing our relationship with profitable customers is to calculate the customer lifelong value, which allows the organization to make its greatest effort to retain most profitable customers.
Customer lifelong value is a value which is expected from a customer in a certain period of time. This value has a direct relationship with the overall benefit of these customers for the organization. In this paper, we present a model for calculating customer lifelong value, according to which we can divide customers into profitable and non-profitable customers. As we discuss, the most important elements in the presented segmentation are: rate of customer loss, legal reserves, profit margins, discount rates, and direct and indirect account costs. These factors, in our model,are presented asmathematical variables. In the end of this paper, we also try to show the necessity of the calculation of the customer lifelong value in relation with customer relationship management in banking, using the information obtained from boththe financial statements of Maskan Bank of Iran and the knowledge of the professional managers.

کلیدواژه‌ها [English]

  • Customer life cyclevalue
  • Key customers
  • Customer segmentation
  1. اداره تحقیقات بانک مسکن (1382). صرفه‌جویی کاربرد بانکداری الکترونیک در بانکداری سنتی.
  2. الهیاری فرد، محمود (1382). بانکداری الکترونیک در استرالیا، نشریه داخلی بانک ملی ایران شماره 94.
  3. الهیاری فرد، محمود (1382). بررسی مقایسه‌ای خدمات بانکداری سنتی و بانکداری الکترونیک در ایران؛ پایان نامه کارشناسی ارشد؛ دانشگاه آزاد اسلامی واحد تهران مرکز.
  4. الهیاری فرد، محمود (1382). خدمات بانکداری الکترونیک و نیازهای اجرایی آن در مقایسه تطبیقی هزینه‌های عملیاتی، خدمات مختلف بانکی؛ تهران؛ پژوهشکده پولی و بانکی بانک مرکزی؛ چاپ اول.
  5. پورایرج، رضا (1377). بررسی عوامل مؤثر بر رضایت بخشی مشتریان بانک به منظور بهبود و بالندگی سازمان؛ پایان نامه کارشناسی ارشد؛ دانشگاه فردوسی تهران؛ دانشکده علوم اداری و اقتصاد.
  6. توسلی شکیب، محمود (1379). بررسی اثرات مبادله الکترونیکی داده‌ها بر افزایش کارآیی و تسهیل مبادلات بین المللی در ایران؛ پایان نامه کارشناسی ارشد؛ دانشگاه فردوسی تهران؛ دانشکده علوم اداری و اقتصاد.
  7. حسن‌زاده، علی، پورفرد، فروغ (1382). بانکداری الکترونیک؛ فصلنامه تازه‌های اقتصاد؛ شماره 100.
  8. حسن زاده، علی، صادقی، تورج (1382).بررسی تأثیرات بانکداری الکترونیکی بر توسعه نظام بانکی؛ مجله اقتصادی؛ شماره 25و26.
  9. روستا، احمد؛ ابراهیمی، عبدالحمید، ونوس، داور (1377). مدیریت بازاریابی؛ تهران؛ انتشارات سمت؛ چاپ دوم.

10. شکرگذار، رضا (1382). امکان سنجی پیاده‌سازی بانکداری الکترونیک در ایران با تأکید بر بانک مسکن؛ پایان نامه کارشناسی ارشد؛ دانشگاه آزاد اسلامی؛ واحد تهران مرکز

11. علی محمدی، محمد (1381). مدیریت ارتباط با مشتری؛ ماهنامه علمی و آموزشی تدبیر؛ شماره 129.

12.عظیمی، سعید (1381). بررسی عوامل مؤثر بر رضایت ارباب رجوع در بانک مسکن از دیدگاه مشتریان؛ پایان نامه کارشناسی ارشد؛ دانشگاه علامه طباطبایی؛ دانشکده حسابداری و مدیریت.

13. Dries, F., Beniot, Dirk Van den Poel. (2009). Benefits of Quintile Regression for the Analysis of Customer Lifetime Value in a Contractual Setting: An Application in Financial Services. Expert Systems with Applications. No. 36, pp: 10475–10484.

14. Kotler, P., Keller, K. (2006). Marketing Management. Prentice Hall Publications, New York.

15. Chan, C. (2008). Intelligent value-based customer segmentation method for campaign management: A case study. Expert Systems with Applications, 34, 2754-2762.

16. Shih, Y. Liu, D. (2008). Product recommendation approaches: Collaborative filtering via customer lifetime value and customer demands. Expert Systems with Applications, 35, 350-360.

17. Nethra Sambamoorthi, N.  Hierarchical Cluster Analysis,  http://www.crmportals. Com /hierarchical cluster analysis .pdf

18. Glady, N., Baesens, B., Croux, C. (2008). Modeling churn using customer lifetime value. European Journal of Operational Research, 19, 130-139.

19. Kim, S., Jung, T., Suh, E., Hwang, H. (2006). Customer segmentation and strategy development based on customer lifetime value: A case study. Expert Systems with Applications, 31, 101-107.

20. Haenlein, M., Kaplan, A. (2009). Unprofitable customers and their management. Business Horizons, 52, 89-97.

21. Coussement, K. & Van den Poel, D. (2008). Churn prediction in subscription services: An application of support vector machines while comparing two parameter-.Expert Systems with applications, 34(1), 313-327.

22. Kim, J., Suh, E., & Hwang, H. (2003). A model for evaluating the effectiveness of CRM, using the balanced scorecard. Journal of Interactive Marketing, 17(2), 5–19.

23. Hwang, H., Jung, T., & Suh, E. (2004). An LTV model and customer segmentation based on customer value: A case study on the wireless telecommunication industry. Expert Systems with Applications, 26(2), 181–188.

24. Jain, D., & Singh, S. S. (2002). Customer lifetime value research in marketing: A review and future directions. Journal of Interactive Marketing, 16(2), 34–45.

25. Verhoef, P.C., & Donkers, B. (2001). Predicting customer potential value an Application in the insurance industry. Decision Support Systems, 32, 189–199.

26. Chan, Chu-Chai Henry. (2005). Online auction customer segmentation using a neural network model. International Journal of Applied Science and Engineering, 3(2), 101–109.

27. Donkers, B., Verhoef, P. & de Jong, M. (2007).Modeling CLV: a test of competing Models in the insurance industry. Quantitative Marketing and Economics, 5(2), 163-190.

28. Glady, N., Baesens, B. & Croux, C. (2009). A modified Pareto/NBD approach for predicting customer lifetime value. Expert Systems with Applications, forthcoming.

29. Kim Gyeongmu, Angela Kim, So Young Sohn. (2009).Conjoint analysis for luxury brand outlet malls in Korea with consideration of customer lifetime value. Expert Systems with Applications 36, 922–932.

30. He,Q. (1999) "A Review of Clustering Algorithms as Applied in IR", Graduate School of Library and Information Science University of Illinois at Urbana-Champaign.

31. Carlsson, G.&Emoli, M,F. (2008). Multipara meter Hierarchical Clustering Methods, Stanford University, Mathematics Department.

32. Spaans, A, M,J. &Van der Kloot, W, A. (2005). The rules of SPSS’ Hierarchical Cluster Analysis for processing ties, Leiden University, Department of Psychology